Invariant surfaces in Euclidean space with a log-linear density
نویسندگان
چکیده
منابع مشابه
Characterizations of Slant Ruled Surfaces in the Euclidean 3-space
In this study, we give the relationships between the conical curvatures of ruled surfaces generated by the unit vectors of the ruling, central normal and central tangent of a ruled surface in the Euclidean 3-space E^3. We obtain differential equations characterizing slant ruled surfaces and if the reference ruled surface is a slant ruled surface, we give the conditions for the surfaces generate...
متن کاملConstructions of Helicoidal Surfaces in Euclidean Space with Density
Our principal goal is to study the prescribed curvature problem in a manifold with density. In particular, we consider the Euclidean 3-space R3 with a positive density function eφ, where φ = −x2 − y2, (x, y, z) ∈ R3 and construct all the helicoidal surfaces in the space by solving the second-order non-linear ordinary differential equation with the weighted Gaussian curvature and the mean curvat...
متن کاملOn the Invariant Theory of Weingarten Surfaces in Euclidean Space
We prove that any strongly regular Weingarten surface in Euclidean space carries locally geometric principal parameters. The basic theorem states that any strongly regular Weingarten surface is determined up to a motion by its structural functions and the normal curvature function satisfying a geometric differential equation. We apply these results to the special Weingarten surfaces: minimal su...
متن کاملLinear Weingarten surfaces in Euclidean and hyperbolic space
In this paper we review some author’s results about Weingarten surfaces in Euclidean space R 3 and hyperbolic space H 3 . We stress here in the search of examples of linear Weingarten surfaces that satisfy a certain geometric property. First, we consider Weingarten surfaces in R 3 that are foliated by circles, proving that the surface is rotational, a Riemann example or a generalized cone. Next...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2018
ISSN: 0001-8708
DOI: 10.1016/j.aim.2018.09.029